
Do less testing

Disclaimer

Business

$

Testing ≠ Quality

Effective software teams are
all alike; every dysfunctional
team is dysfunctional in its
own way
L. TOLSTOY

Effective software team

Process Quality SoftwareDeveloperRequirements

Dysfunctional software team

ProcessDeveloperRequirements Low-quality
Software

Dysfunctional software team

Process Quality SoftwareDeveloperRequirements

Testing Phase

Dysfunctional software team

Process Quality SoftwareDeveloperRequirements

Testing Phase

Dysfunctional software team

Process Quality SoftwareDeveloperRequirements

Testing Phase

Dysfunctional software team

Process Quality SoftwareDeveloperRequirements

Testing Phase

Dysfunctional software team

Process Quality SoftwareDeveloperRequirements

Testing Phase

Tester
Writes the test code

Developer
Writes the functional code

Conflict in roles

Tester
Wants to block release

Developer
Wants to release

Conflict in aims

Tester
Cares about quality

Developer
Does not care about quality

Conflict in attitude

Tester
Value is implicit and unmeasurable

Developer
Delivers explicit value to the business

Conflict in perception

Dysfunctional software team

Process Quality SoftwareDeveloperRequirements

Dysfunctional software team

High-quality
Process

Quality SoftwareDeveloperRequirements

Dysfunctional software team

High-quality
Process

Quality SoftwareRequirements High-quality
Developer

Effective software team

High-quality
Process

Quality SoftwareHigh-quality
Developer

High-quality
Requirements

Testing ≠ Quality

Do less testing

What is testing for?
What are the ongoing costs?

Manual testing
Can we find bugs?

Automated testing
Is it safe to release?

Automated testing is not cost-free

(Virtual) Hardware Time to run

Framework &
implementation

Ongoing maintenance

Automated testing is not cost-free

(Virtual) Hardware Time to run

Framework &
implementation

Ongoing maintenance

Reducing time between
releases from:

Months to weeks

Weeks to days

Days to hours

Every commit

JOURNEY TO CONTINUOUS DEPLOYMENT

Acceptable testing:

Several days of manual testing to find
bugs

Absolute reliance on fully automated
pipeline

How to do less testing?

How to spend less time
doing testing?

Prevent
Identify potential problems  

before coding

Mitigate
Reduce the impact of
problems to end users

Listen
Adjust the quality bar based

on your users’ actual
experience

Tactics to reduce/replace testing

Examples

Prevent
• Kickoffs to identify edge

cases

• Paired development

• Train your developers in
quality thinking

Mitigate
• Monitoring

• Staged deployments with
automatic rollbacks

• Feature flags

Listen
• Realistic and consistent bug

policy

• Impact-driven priorities

• Don’t sweat the small stuff

Mindset
Goal is quality software, not testing activityTakeaways

Automate
Machines tell you that deployment is safe

Trust
Developers are allies with the same goals

Measure
Testing has costs, especially time-related

Replace
Alternative ways to engineer quality software

